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ABSTRACT

The Distributed Array Processor (DAP) manufactured by International

Computers Limited is an array of 1-bit 200-nanosecond processors. The Pilot

DAP on which the present work was done is a 32 x 32 array; the comercially

available machine is a 64 x 64 array. We show how the projected SOR algorithm

for the linear complementarity problem Aw > b, w > 0, wT(Aw - b) - 0, can be

adapted for use on the DAP when A is the 'finite-difference' matrix

corresponding to the difference approximation to the Laplace operator.

Application is made to two linear complementarity problems arising, respec-

tively, from two-and three-dimensional porous flow free boundary problems.
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SIGNIFICANCE AND EXPLANATION

An array processor, the Distributed Array Processor manufactured by

International Computers Limited, has recently become available. The DAP is an

I'
array of 1-bit processorsi in the production machine there are 4096 processors

arranged as a 64 x 64 array. It is normally programed in an array processing

extension of Fortran.

It is of interest to develop algorithms which can efficiently use the

great computing capacity of the DAP. We show how the projected SOR algorithm

for the linear complementarity problem Aw > b, w > 0, wT(Aw - b) - 0 can be

adapted for use on the DAP when A is the finite-difference matrix

corresponding to the difference approximation to the Laplace operator.

Application is made to two linear complementarity problems arising,

respectively, from two and three-dimensional porous flow free boundary

problems.
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THE SOLUTION OF LINEAR COMPLEMENTARITY PROBLEMS ON AN ARRAY PROCESSOR

C. W. Cryer* ,1, 2, P. M. Flanders+, D.J. Hunt+, S. F. Reddaway+,

and J. Stansbury**,

1. Introduction

An LCP (linear complementarity problem) is a problem of the form: Find a real

n-vector w - (wi) satisfying

(a) Aw > b,

(b) w>0 , (1.1)

(C) wT(Aw - b) -0

where b - (b i ) is a known real n-vector and A - (aij) is a known real n x n

matrix.

Linear complementarity problems arise in many contexts (Balinski and Cottle

[1978] ). In particular, there is a close connection between linear complementarity

problems and variational inequalities (Cottle, Giannessi and Lions [19801, Cryer and

Dempster (1980]).

Many problems in continuum mechanics can be reformulated as variational

inequalities (Duvaut and Lions [1976], Kinderlehrer and Stampacchia [1980]), which,

when discretized, reduce to linear complementarity problems of the form (1 .1) with

special features:
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1. A is a large matrix, perhaps of order 25,000.

2. A is a 'finite-difference' or 'finite-element' matrixi in particular,

A is sparse with a great deal of structure. (1.2)

3. A large percentage of the elements of the solution w are non-zero.

Because of these special features, the standard methods of solving linear

complementarity problems are not very efficient, and methods of solution have been

developed which take advantage of the structure of A: projected SOR (Cryer [1971],

Glowinski [1971])1 modified block SOR (Cottle, Golub, and Sacher 11978]); multigrid

projection (Brandt and Cryer [1980])1 and generalizations of projected SOR

(Mangasarian [1977]). Cryer 11980] briefly surveys much of this work.

In the present paper we consider the use of the parallel computer DAP to solve

linear complementarity problems with the features (1.2). The DAP (Distributed Array

Processor, manufactured by International Computers Limited), which is an SIMD array

of typically 64 x 64 processors, is described in Section 2. In Section 3 we

describe the implementation on the DAP of projected SOR to solve a linear

complementarity problem derived from a two-dimensional porous flow free boundary

problem, and in Section 4 we extend this work and solve a linear complementarity

problem derived from a three-dimensional porous flow free boundary problem. In

Section 5 we comment on possible future developments, and the overall conclusions

are in Section 6.
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2. The Pilot DAP (Distributed Array Processor)

The present work was carried out on the Pilot 32 x 32 DAP at Stevenage,

England, and we will describe this machine first. A 64 x 64 version is available,

and the minor differences between the two machines are indicated at the end of this

section.

DAP Hardware

The essential features of the Pilot DAP hardware are as follows (Flanders,

Hunt, Reddaway, and Parkinson [1977], Reddaway [1979]):

1. A 32 x 32 array of identical processing elements (PEs) with a cycle time of 200

nanoseconds.

2. Bach PE has a one-bit adder, 2K bits of storage, and three one-bit registers (a

general purpose register for accessing data and performing arithmetic; a carry

register; and an activity control register).

3. Each PZ is connected to its four neighboring Pe's (North, South, East, and

West). In a given cycle all PB's access their neighbor in the same direction

(determined by the program). In addition, the PEa are linked by row and column

highways which connect together all the P~s in each row and column.

4. There is a master control unit (MCU) which broadcasts instructions to all the

PiE. All VAs can perform the same instruction simultaneously, but certain

instructions are only effective if the activity control register is 'true'.

DAP Software

A programs to run on a DAP systsm normally comprises a standard FORTRAN program

and a number of subroutines and functions written in an artay processing extension

at VORTRAN known as DAP-FORTRAN (Flanders [1979), Gostick [1979], ICL [1979)).

The standard FORTRAN is executed by the host computer and provides mainly

input-output and overall control. The D#P-FORTRAN is executed by the DAP and

provides high speed computation. Data is shared between them using common blocks

held in DAP store.
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Some features of DAP-FORTRAN are described below.

In addition to the data types of FORTRAN, DiP-FORTRAN has two new data types:

vector and matrix. with a 32 x 32 DAP a vector has 32 components and a matrix

has 32 x 32 componentsi the components can be real, integer, or logical.

For example, the data statements

REAL U( ), V( , ), W(,5), X(,,3),

INTEGER A(,1), B( ), C(,,4) (2.1)

LOGICAL FLAGS(,2), MASK( , )

declare U (a real vector), V (a real matrix), W (an array of 5 real

vectors), X (an array of 3 real matrices), A (an array of I integer vector), B

(an integer vector), C (an array of 4.integer matrices), FLAGS (an array of 2

logical vectors), and MASK (a logical matrix).

Expressions in DAP-FORTRAN can consist of scalars, vectors, and matrices with

the usual unary and binary operations. Operations on vectors and matrices are

performed in parallel using all 32 x 32 P~s.

Operations between a scalar and a vector or a matrix cause implicit expansion

of the scalar to the necessary dimensions. For example, if M is a matrix of size

32 x 32 and S is a scalar, then M - H + S causes S to be implicitly expanded

to size 32 x 32 with each element being equal to S; then the corresponding elements

of "matrix* S and matrix M are added in parallel and assigned to M in parallel.

Arrays of vectors and matrices may be used to construct more complex

structures. To process a vector or matrix array requires performing calculations on

the individual vectors or matrices in the array.

Selection and updating of parts of vectors and matrices can be performed using

the powerful indexing capabilities of DAP-FORTRAN. Matrix sections can be specified

by omitting subscripts along which all elements are to be taken. Using this, whole

rows or columns can be selected from matrices. For example, M(I,) specifies the

I-th row of matrix M.

L ,, . . . . ... . I II I I I I I I I II I I I I I I I I ' 1 I II . .. . . . ..-.



- , . .v......-

Shift indexing is a very useful feature of DAP-FORTRAN. For example, in a

simple solution of Laplace's equation on a 32 ". 32 grid we wish to replace each

element with the average of its four neighbors. This could be coded in FORTRAN as:

DO 10 1 - 2,31

DO 10 J - 2,31

Y(I,J) - (X(I + 1,J) + X(I - 1,J) + X(I,J + 1) + X(I,J - 1)) / 4.0

10 continue

Further code would be needed to handle elements on the edges of the matrix.

The DAP-FORTRAN code is much simpler:

X - (X(+,) + X(-,) + X(,+) + X(,-)) / 4.0 • (2.1)

The term X(+,) uses shift indexing. In particular, X(+,) specifies a matrix

where the (1,J) element is the (I + 1,J) element of X, for 1 < I < 32 and

I < J < 32. Thus, X(+,) contains all the "south" neighbors of X. Edge values

(corresponding to subscripts 0 or 33) are defined to be zero. As an

alternative, cyclic geometry may be specified by using a GEOMETRY statement.

Longer shifts can be performed by explicit system functions; for example,

SHS(X,I) shifts the matrix X I positions to the south. Note that since all the

updating is performed simultaneously, it is not necessary to write the results to

another matrix.

Logical matrices and vectors can be used to select elements from an array. For

example, if we wished to update only certain elements of X in statement (2.1), we

could set the corresponding elements of LM, a logical matrix, to true and all

other elements of LM to false. That is, if X(I,J) is to contain the average of

its four neighbors, then LM(I,J) is set to true. Otherwise, LM(I,J) is false.

Then the following statement performs the required task:

X(LM) - (X(+,) + X(-,) + X(,+) + X(,-)) / 4.0

-5-



DAP-FORTRAN has a number of useful system functions whose arguments and results

may be scalars, vectors, or matrices. The ALTC, ALTR, MERGE, MAX, and ABS func-

tions will be briefly described since these are used in the programs in this paper.

The functions ALTC and ALTR return logical matrices. If C is the

argument to ALTC, then the first C columns of the result matrix are set to

false, the next C columns to true, the next C columns to false, etc. ALTR

performs similarly for rows.

The function MAX (now named MAXV) returns a scalar equal to the largest

number in its vector or matrix argument. The function ABS returns a vector or

matrix containing the absolute value of every element in its argument.

The function MERGE takes three arguments and returns a matrix. The first two

arguments are matrices (or implicitly expanded scalars) and the third argument is a

logical matrix. If the (I,J) element of the logical matrix is true then the

(I,J) element of the result matrix is set equal to the (I,J) element of the first

matrixi otherwise, it is set equal to the (I,J) element of the second matrix.

Examples of DAP-FORTRAN programs are given in Sections 3 and 4, and the

Appendices.

DAP Arithmetic

When a DAP-FORTRAN program is executed by the DAP, expressions involving only

scalars are executed sequentially, but operations on vectors and matrices are

performed in parallel by the PEs.

The DAP memory can be visualized as a cuboid, with 2K horizontal planes, each

plane being a 32 x 32 square of bits. The 32 x 32 array of PEs lies on top of the

cube, and each column of 2K bits belongs to the PE above it.

Two storage modes are used in DAP-FORTRAN: vertical and horizontal. Scalars

and vectors are stored in horizontal mode while matrices are held in vertical mode.

In vertical mode, each number is held entirely within the store of one PE with

successive bits in successive store locations. Thus, for an integer matrix, the(k-6-



sign bit of every element in the matrix would be held in the same store address of

each PE.

In horizontal mode, a number is spread along a row of PEs. Thus, a scalar

occupies one row while a vector occupies 32 rows. DAP instructions are also stored

in this format.

All arithmetic is carried out using subroutines. Some operation times for 32

bit numbers are given in Table 2.1.

It will be noted that vector arithmetic is faster than matrix arithmetic. This

is because a row of PEs are available for each vector component, while only one PE

is available for each matrix component.

Some of the quoted computation times are data dependent. In particular, matrix

multiplication by a scalar typically varies from 170s to 200ps depending upon

the distribution of zeros in the binary representation of the constant; for special

scalars such as .5 or 3 the multiplication time can be as low as 60s.

Operation Matrix Vector Scalar

floating point addition 140-180ps 54ps 27ps

floating point multiplication 315ls 50tis 34ps

floating point multiplication 60-200ps 40is
by a scalar

One shift of a real matrix, 151js 2ps
e.g. X(+,)o

Move a floating point matrix 151is 2Us 2jis

logical AND 2ps 2ps 21is

logical mask ijs 2ps

Note: Times are slightly different on production DAPs.

Table 2.1. Average DAP-FORTRAN arithmetic times for the Pilot DAP.
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Host-DAP Interface

The sequence of operations for compiling and running DAP programs is as

follows.

(a) The host computer compiles the host FORTRAN program and the DAP-FORTRAN

subroutines into host and DAP machine codes respectively.

(b) DAP machine code, incorporating all necessary low level subroutines, is loaded

into DAP memory in horizontal mode where it occupies a few bits of each PE's

memory. Host machine code is loaded into the host memory.

(c) Execution begins in the host and control is transferred to the DAP as requ ired

by subroutine calls. on completion of DAP processing the host resumes

execution at the point following the call.

Detailed information on the Pilot DAP relevant to understanding the programs in

this paper is given in Appendix A.

The Production DAP

The current production DAP is generally similar to the Pilot but differs as

follows:

(a) there are 4096 P~s arranged in a 64 x 64 array;

(b) each PE has 4K bits of memory;

(c) arithmetic operations differ somewhat in timing but are overall a little

fasten;

(d) coupling between host and DAP is more direct so the interface is simpler than

indicated in Appendix A.



3. Numerical solution of a t,.-dimensional free boundary problem

The flow of water through a porous dam is a well-known model problem. Water

seeps from a reservoir of height H through a rectangular dam of width L to a

reservoir of height h. Part of the dam is saturated and the remainder of the dam

is dry. The wet and dry regions are separated by an unknown free boundary r which

must be found as part of the solution.

y

IIA=IO, H) F=IL, H)

___-___~' E . '

~HEAD SEPGH -WATER--- 4 N N , FACE

- N WATER N FACE

-TAIL--

"-. _ _ _ _ _ _ _ _ -- W A T E R -- h

FIG. 3.1. Flow through a porous rectangular dam R.

As shown by Baiocchi [1972] the problem can be formulated as follows: Find

u on the rectangle R = ABCF such that

(a) -2u > -1, on R,

(b) u > 0, on R , (3.1)

(c) u(-V2u + 1) = 0, on R,

and

(H - y)2/2 on AB ,

(h - y)2 /2 on CD ,

u- g- (3.2)

[H2 (L - X) + h2 x]/2L, on BC

0, on DFA
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The wet region of the dam consists of the points where u > 0 and the dry region

consists of the points where u - 0.

When the problem (3.1), (3.2) is approximated using the classical five point

difference approximation for the Laplace operator, one obtains an LCP of the form

(1.1), where the matrix A and right hand side b are the same as those that would

be obtained if the Dirichlet problem

-V2u = -1, on R
(3.3)

u = g, on R,

were approximated by the finite difference equation Aw - b. More precisely, let an

M x N grid with gridlength Ax be superimposed upon R, and let the values of

u and g at the point ([j - 1]Ax,[i - i]Ax) be denoted by uij and gij,

respectively, for 1 < i < M and I < j < N. Then (1.1) takes the form

(a) 4wij - wi+1 j - wi 11 j - Wi,j+ - wi,j_ l -(AX) 2

for 1 < i < M, I < j < N

(b) w.. > 0, for 1 < i < M, 1 < j < N , (3.4)

(c) wij(4wij - wi+l j - Wi-l' j - W ij+ I - wi,jI + (Ax) 2 0

for 1 < i < M, I < j < N,

(d) wij = gij for ((j - 1)Ax,(i - )Ax) e aR

We discuss below two iterative methods for solving (3.4): the projected Jacobi

method and the projected SOR method. The projected Jacobi method is much slower

than the projected SOR method, but is trivial to implement on the DAP and serves as

a useful introduction to DAP programming.

The projected Jacobi method

Let w(0 ) = (w(0 ) ) be an initial guess for the solution w - (wij) ofij

(3.4). One generates a sequence of approximations w(k )  . (k), k - 1,2,...,
i-



(kc) (kc) (k) + (kc) (kc)2
Ca)Wz - M + w M +vw +v W(M)

ij i-1 j i+1,j i,j1 I  i,j+1

(b) w- zij/ 4 ,

((k+1) max(Ow(k+ 1  (35)ij ' i ),

for I < i < M and 1 < j < i
(k+1)

(d) wij - giij for ((j - 1)Ax,(i - 1)Ax) e 8R

It is known that the projected Jacobi method will converge (Mangasarian (1977]).

If M < 32 and N < 32 then the gridpoints can be regarded as a subset of

a 32 x 32 array, and one PE can be associated with each gridpoint. Defining w(k )

w(k+1) and z(k) as real DAP-FORTRAN matrices, the computation (3.5) is trivial to

implement on the DAP.

In Figure 3.2 we list a DAP subroutine JACOBI which solves the dam problem for

the case h - 0, H - 31, L = 31, M - N - 32, and Ax - 1. This subroutine could be

called by a host program, which could then print the answers in the matrix We

Using the operation times given in Table 2.1 we can readily estimate the time

required per iteration in the main loop of the JACOBI subroutine (see Figure 3.3).
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. • . ... i . ... ,... . . .

SUBROUTINE JACOBI

LOGICAL MASK( , ), WSIGN( , ) Declare logical 32 x 32 matrices, MASK and
WSIGN

REAL W( , , z( , ) Declare real floating point 32 x 32 matrices
W and Z

REAL INDEX( ) Declare a real floating point 32-vector INDEX.
EQUIVALENCE (W,WSIGN) Declare the logical matrix WSIGN equivalent to

the first bit, the sign bit, of the matrix W.
HEIGHT 31.0

WIDTH = 31.0

DO 10 I - 1,32 Initialize INDEX vector.

INDEX(I) - (32 - 1)/3190

10 CONTINUE.

W - 0 Clear matrix W

TEMP - HEIGHT*HEIGHT*.5

W(1, ) - TEMP * INDEX Set values of the matrix W equal to g
on bottom (BC).

W( ,1) - TEMP * INDEX * INDEX Set values of the matrix W equal to g
on left (AB).

MASK = .TRUE.

MASK(1, ) - .FALSE.
Set the matrix MASK to be true at interior

MASK(32, ) = .FALSE. points and false at boundary points.

MASK( ,1) .FALSE.

MASK(,32) .FALSE.

DO 50 I = 1, 100 Start of main loop

I Z - W(+, ) + W(-,) + W(,+) Sum neighbors and store in Z matrix.
+ W( ,-) - 1.0

2 W(MASK) - .25"Z Transfer average to W at interior points.

3 W(MASK .AND. WSIGN) - 0.0 Project by setting W - 0 at points where
MASK is true and the sign of W is negative.

50 CONTINUE

END

FIG. 3.2. The DAP subroutine JACOBI.
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Statement Operations Time (us) I -

Z - W(+, ) + W(-, ) + W(,+) 4 floating point matrix
+ W(,-) - 1.0 additions/subtractions 640

4 index shifts 60
1 scalar-matrix assignment 15

W(MASK) - .250Z I floating point matrix multipli-
cation by a special constant 70

1 logical mask 1

W(MASK .AND. WSIGN) 0.0 1 logical AND 2
1 logical mask I
I scalar-matrix assignment 15

DO 50 1 - 1,100 7
811

FIG. 3.3. Estimated computation time for the main loop, of JACOBI.

From Figure 3.3 we see that one projected Jacobi iteration over the whole

32 x 32 grid requires Blips.

The projected SOR method
Le (0 )  "(0)

Le twj ) be an initial guess for the solution w - (wij) of

(3.4). In the usual implementation of projected SOR one generates a sequence of

approximations w (k )  w as follows:
ij

(a) z (k) (k+l) (k) (k+l) (k) 2(a) = +Vjj+ii.1 +Vj - (Ax)

ij ij ij ij
(k) (k)

-(W/4)z: + (1 - 1)wi) , (3.6)

(c) (k+l) max{O (k1/2
ij , ij

for 1 < i < M and 1 < j<N ,

where w is a constant, the over-relaxation parameter.
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It is known that the iteration (3.6) converges for all initial guesses w(0 )

iff 0 < w < 2 (Cryar (19711, Glowinaki (19711).

The implementation (3.6) is not suitable for parallel amputation because the

new values w(k+1) cannot be computed simultaneously: w (k+1) and w (k+1) must be
(k+1)

known before w can be computed.

However, there is a simple but ingenious way of making SOR suitable for

parallel computation. In the implementation (3.6), we order the gridpoints by rowe

and columns (Figure 3.4a). Instead, let us visualize the gridpoints as forming a

red-black chess board and number first the red points and then the black points

(Figure 3.4b).

13 14 15 16 1 161

9 10 11 12134

5 6 / 111

1 2 3 4

(a) Usual (b) Red and Black

FIG. 3.4. Orderings of gridpoints (for a 4 x 4 grid).

Applying projected SOR to the points numbered an in Figure 3.4(b) we find that

each projected SOR iteration can be broken down into two stages: in the red(first)

stage projected SOR is applied to the red points. and in the black(second) stage

projected SOR is applied to the black points:

-14-
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Red Sta.
k(a) akred) - (kblaok) (kblack) (kblaok) (k,black) A2

(a) a j il~ +w -1,3 +1w,3+1 +wi'j-1 (X

M w(k41/2 ,red) (w/4)a (k,red) + w (k,red) 7)1,3 ±3 ii

(c) (k+l,red) max o (k+ 1/ %,red))

lack stage

(a) I(k,black) . (k+1 red) + 1(+,red) (k+1 red) + (W,rod) - (Ax)2

ij - 41,3 y-1,3 1,3+1 ,1j-1 ,

(k+ 1/2 ,black) .. (k,black) + (k,black) (3.)(b) W ( w/4)aI + (1 -W)i 38

(C) V(l, black) .
c) vii -±t3vt

Zach stage can be carried out in parallel, with the red(black) processors

working and the black(red) processors idle.

This idea of using the red-black ordering for parallel processors has appeared

several time in the literature (Keller (1970)). its use on DI was first suggested

by Hunt 11974). (In Europe, white-black chessboards are more u al than red-black

ones).

In Figure 3.5 we list a DAP-FOTRAN subroutine PJaOR for implementing the

heart of the algorithm (3.7), (3.8). The subroutine is provided with several input

parameters with obvious meanings. In addition, two logical matrices are provided as

inputs the logical matrix NASUABK Is true at gridpoints in the interior of the

dam, and false elsewhere# the logical matrix MASK in true at black gridpoints and

false at red gridpoints. Finally, the values of the real ma.rix W at the boundary

points 3R must be computed using (3.4d) before PROJSOR is called. A full listing

of the program is given in Appendix D.

f 1S
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SUBROUTINE PROJSOR

Commeo /RMAT/W( )
COMMON /RSCA/NAX DFF,C EGA,EPSILONPDAM WIDTH,DAM HEIGHT
COMMOIN /ISCA/NUMB ITERATIONS,NUMB ROWS,NUMB COLS
COMMON /SUBLMAT/MAsK( , ), MASK MASK( , )
REAL W,MAX DIFF,OMEGA,EPSILON,DAM WIDTH,DAM HEIGHT

LOGICAL MASK, MASK MASK
INTEGER NUMB ITERATIONS,NUMB ROWS,NUMB COLS

REAL Z( , ), GRID2, ZMIN W( , ),SAVEW( , ) Local variables.
REAL ALPHA,BETA
INTEGER NUMB TIMES
LOGICAL DONE, WSIGN( ,
EQUIVALENCE (WSIGN, W)

V(NSIGN) - 0.0 Ensure that W is nonnegative
everywhere.

ALPHA - OMEGA * .25 Calculate the constants that are

BETA - 1.0 - OMEGA needed later on.
GRID2 - (DAN HEIGHT/NUMB ROWS) ** 2

40 SAVE V - W Start main loop.
NUMB ITERATIONS - NUMB ITERATIONS + 1 Save the old value of W.
DO 45 NUMB TIMES - 1,2

I KASK(MASK MASK) - .NOT. MASK Reverse state of MASK.

2 Z - W + W(-,-) Calculate Z on only the red (or
3 Z - Z(+, ) + Z(,+) - GRID2 black) points as determined by

4 W(MASK) - ALPHA * Z + BETA * W the MASK.

5 W(WSIGN .AM3. MASK MASK) - 0.0 Project
45 CONTINUE

MAX DIFF - MAX(ABS(SAVEW - W)) Find maximum difference between

old and new.

DONE - (MAX DIFF.LE.EPSILON) Check if desired accuracy is

IF (.NOT* DONE) GO TO 40 attained.

RETURN

FIG. 3.5. The DAP subroutine PROJSOR.
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The computation time for one pass through the main loop of the subroutine

PROJSOR is estimated in Figure 3.6, from which it follows that each PROJSOR

iteration, which requires two passes through the loop, takes about

2 x 1135 - 2.27ms. To check this estimate, the average execution time per

iteration in the subroutine PROJSOR was obtained by measuring (on a real external

physical clock) the time required for a large number of iterations for the dam

problem with H - 24, h - 0, L - 16, and Ax - 1. (This particular problem was

chosen because it is a test problem which has been solved by many authors). The

measured time per iteration on the pilot DAP was 2.2ms, as compared to the estimated

time of 2.27ms.

Statement Operations Time (Ps)

1 MASK(MASXIASK) - .NOT. MASK I logical mask 1
I logical negation I
I logical store 1

2 Z - W + W(-,-) 1 index shift of two places 21
I floating point matrix addition 160

3 Z - Z(+, ) + Z(,+) - GRID2 2 index shifts 30
1 floating point matrix addition 160
1 floating point matrix

subtraction 160
1 scalar-matrix assignment 15

4 W(MABK) - ALPHA * Z I floating point matrix addition 160
+ BETA * W 2 floating point matrix

multiplications by a constant 400
1 logical mask 1

5 W(WSIGN *AND. MASK 1 logical AND 2
MASK) - 0.0 1 logical mask I

1 scalar-matrix assignment 15

DO 15 NUMB TIMES - 1,2 7
1135

FIG. 3.6. Estimated computation time for the inner loop of PROJSOR.
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77'

We conclude this section with some comments:

1. For comparison, the dam problem with H - 24, h - 0, L - 16, and Ax - 1 was also

solved on the UNIVAC 1180 at the University of Wisconsin, using the conventional

ordering of gridpoints and an optimizing compiler with single precision

arithmetic (36 bits), and the time per iteration was found to be 5.29ms. For

this problem the Pilot DAP was therefore 2.4 times faster than the UHIVAC 1180.

It should be noted that for this problem only 25 x 17 - 425 of the 1024

DAP PEs were used. On a square region the Pilot DAP would be six times faster

than the UNIVAC 1180.

2. In general, one expects to be able to predict DAP execution times to within

about 5%, because DAP programs have little overhead and spend almost all their

time in computation.

3. Since DAP floating point operations are relatively expensive, it is worthwhile

optimizing the code. (Readers who used early computers which also had

relatively slow arithmetic operations may feel nostalgic). An example of such

optimization occurs in the subroutine PROJSOR (see Figure 3.5). The computation

(3.7a) could have been implemented as:

Z - W(+, ) + W(-, ) + W( ,+) + W(,-) - GRID2

which requires three additions and one subtraction, and takes

4(15) + 4(160) + 15 - 745ps
(shifts) (additions) (scalar-matrix assignment)

However, by sharing intermediate esults between P1's, the amount of arithmetic can

be reduced; the implementation in PROJSOR is

Z - W + W(-,-)

Z - Z(+, ) + Z(+, ) - GRID2

which is estimated at only 546us.

-19



it should be noted that both implementations use only half the Pls for

arithmetic at any one time. Larger grids or three-dimensional problem (see Section

4) can use all the PiE simultaneously.



4. Numerical solution of a three-dimensional free boundary problem.

A three-dimensional extension of the dam problem of Figure 3.1 was introduced

by Stampacchia [19743 (see also France [1974]). Water seeps through a porous dam in

a rectangular channel of width a and height H. The walls of the dam are vertical

but the thickness of the dam is variable, so that the dam occupies the region

3 2 x (O,H) (4.1)

where the horizontal cross-section 92 is of the form

2 ( ((x,y) : 0 < x < a, 01(x) < y < 2(x)} . (4.2)

In the specific problem considered here, 12 is the L-shaped region

S2 w (O,ED) x (0,FE) U [ED,AF) x (0,AB) , (4.3)

where the points A, B, C, D, E and F are as shown in Figure 4.1. The upstream

water height is H and the downstream water height is h.

As shown by Stampacchia [1974], the problem can be formulated as follows:

Find u on the region Q3 such that:

(a) -V2 u - -[Uxx + u + U zz] > -1, in 93, yy --z

(b) u > 0, in f3 , (4.4)
3

(c) u(-V2 u + 1) - 0, in 93

and

I(H - z)2 , on the upstream face AAoFoF

1 21(h - z)2 , on the downstream face below water level BoCoDoEoE1 D1 C1 B1

u = g = 0 , on the downstream face above water level B1C1DIEIEDCB , (4.5)

0 , on the top ABCDEF ,

u(xy), on the bottom AoBoCoDoEoF0

and

u = u = 0, on the sides ABBoA0  and EFFoE0 • (4.6)
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IFREE SURFACE

Do DOWNSTREAM

FIG. 4.1. Flow through a three-dimensional porous dam with

L-shaped horizontal cross-section.

Here ci(x,y) is the solution of the two-dimensional mixed boundary value problem

(a) a x + C = 0, in A B0CoDoE( F0

2H, on AOF

(b) (4.7)

hC on0 B 0UE0F

(c)~ a , on A0 B0 UE0 F0

To solve the problem (4.4)-(4.7) numerically we introduce a grid with

Ax - - Az and denote the approximation to u([i -2]Ax,[j - 1JAy,[k - 1]Az)

by ijk and the approximation to ax[i - 2]Ax,[j 1 H4y) by w~ _ ijl, for

2 < i < M4 - 1 and 1 < j S N. As in Bruch 11980] the computation proceeds in two

stagest

Stage 1: The two-dimensional problem (4.7) is approximated by replacing the

differential equation (4.7a) by the difference equations
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4wij -wi+, j - - W 1 1j+1 - wi'lj 1  0 . (4.8)

The Dirichlet boundary conditions (4.7b) are satisfied by computing and storing the

values of wijl = ij on A0F0  and BoCoDoE0 . The Neumann conditions (4.7c) are

satisfied by introducing two fictitious rows of gridpoints, adjacent to A0B0  and

E0F 0  respectively, and requiring that the values of w on a fictitious row should

be equal to the values of w on the corresponding interior row; that is,

W j = w 3 j and wM, j = wM_2,jI for 1 ( j < N.

The resulting system of equations is solved using a simple modification of the

subroutine PROJSOR (see Figure 3.5): the term -GRID2 is dropped from statement

number 3; statement number 5 is deletedi and the statements

W(1, ) = W(3, )
(4.9)

W(M, ) = W(M - 2, )

are inserted between statements number I and 2, so as to make the values at the

fictitious points equal to the corresponding interior values;

Stage II: The three-dimensional problem (4.4) is approximated by the LCP

(a) 6wi,j,k > Wi+1,j,k + wi-l,j,k + wij+,k + wij-,k

2+w. - (Ax) 2
+ Wi,j,k-1 i,j,k+1

(b) w i,j, k  0, (4.10)

(c) w i,j,k [6wi,j,k - Wi+l,j,k - wi-1,j,k - wij+,k - wij-,k

- w- w+ (Ax) 2 ] = 0
w i,j,k+1 wi,j,k-1

The Dirichlet boundary conditions (4.5) are readily imposed, while the Neumann

conditions (4.6) are treated by introducing fictitious sides parallel to the sides

ABBoA0  and EFFoE0, and requiring that the values of w on the fictitious sides

be equal to the values of w at the corresponding interior points.
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To solve the LCP (4.10) we introduce a three-dimensional red-black partitioning

of the gridpoints, so that each red(black) gridpoint has six black(red) neighbors.

(It should be noted that the red/black ordering on any horizontal plane is the nega-

tion of the red/black orderings on the adjacent horizontal planes.) As in the two-

dimensional problem treated in Section 3, each projected SOR iteration can be broken

down into two stages: a red stage in which projected SOR is applied to all the red

points in the three-dimensional w array, followed by a similar black stage. In

detail:

Red Stage
(kred) (k,black) (k,black) (k,black) (k,black)

(a) ij i+,jk +wi-1,j,k wi,j+1,k wi,j-l,k

(k,black) (kblack) 2+ wi,j,k+l + w ,j,k_- (Ax),

(k+ 1/2 red) = (k,red) W)w(kred)
(b) wijk (jk  + (1 - ijk , (4.11)

(C) w (k+1,red) max{Ow (k+1/2 ,red)
ijk ijk

Black Stage

z (k,black) (k+l,red) + (k+1,red) + (k+1,red) (k+l,red)
(a) ijk i+1,j,k i-l,j,k i,j+1,k + wi,j-1,k +

(k+1.red) + (k+1,red) 2(Ax)2

iljlk+1 i,j,k-1

(b) w(k+ 1/2,black) . (kblack) + (1 (k,black) (4.12)
()ijk ij Wijk'

uk (W/(k+zi kblack lc

(C) w (k+1,black) = max{,Wk black)
ijk

To implement the algorithm (4.11), (4.12) it was assumed that the dimensions of

12 were such that the gridpoints on any horizontal cross-section of the dam could

be regarded as a subset of a 32 x 32 array. The solution w was stored as an array

of matrices, the matrix W( ,,k) containing the values of w on the horizontal
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plane at a height (k - 1)Az. To control the parallel computation two logical

matrices were used: MASKRB which is true at interior red gridpoints in the current

horizontal cross-section and false otherwisei and MASKMASK which is true at interior

points of 02 and false otherwise.

The algorithm (4.11), (4.12) was implemented in two ways:

Implementation 1:

During each red(black) stage the horizontal planes were updated in turn, and on

each plane the red(black) points were updated in parallel.

The computation of z(k) requires five additions and one subtraction. Given

an unlimited number of processors, n additions/subtractions require log2n steps,

so that six additions/subtractions require at least three steps. By taking

advantage of idle PEs, and remembering that, on the DAP, shift operations are much

faster than arithmetic operations, the DAP-FORTRAN subroutine in Figure 4.2 is an

efficient implementation of (4.11), (4.12) (compare Figure 3.5). A iull listing of

the program is given in Appendix C.

The subroutine in Figure 4.2 uses the functions SHS(outh) and SHN(orth) to

shift W instead of the equivalent, but slower, statements (4.9).

Implementation 2:

As in the three-dimensional magnetohydrodynamic code of Reddaway [1976] we re-

arrange the values of w. The horizontal planes are considered in pairs, and che

red points on each even-numbered plane are exchanged with the corresponding black

points on the next odd-numbered plane. As a result, instead of having n planes,

each containing red and black points in a checkerboard pattern, we have n/2 planes

of red points interleaved with n/2 planes of black points. This makes it possible

to use simultaneously all interior PEs for arithmetic.

The corresponding subroutine is given in Figure 4.3, and a full listing of the

program is given in Appendix D. To save time the test for convergence is executed

only every TIMES iterations, where TIMES is an input parameter.
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The subroutine in Figure 4.3 assumes that there is an even number of planes.

To avoid additional testing, it is assumed that a copy of the top plane is stored

above the top plane.

The two implementations were run on the problem with H - 10, h - 0,

AF - FE - 20, CD - BC - 10, which was chosen because it had previously been solved

by Bruch [1980]. For comparison, the problem was also solved on the UNIVAC 1180

using single precision arithmetic and optimized FORTRAN code. The measured computa-

tion times per projected SOR iteration (including both red and black stages) were:

Implementation 1: 32ms

Implementation 2: 16.0-18.2ms
(dependent on frequency of convergence tests)

UNIVAC 1180: 34ms

so that implementation 2 on the Pilot DAP is about 2 times faster than the UNIVAC

1180.

The estimated time per SOR iteration (implementation 2) was found as in Figure

3.6, and was found to lie between 15.4 and 17.4ms, depending upon the frequency of

convergence tests.

For this problem only 383 (i.e. 21 x 23 - 10 x 10) of the 1024 PEs were used.
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__ _ _ _ -- . . ,-, .w* . - i
f

C THE MAIN LOOP - PROCESS ALL THE Z PLANES
C

SUBROUTINE MAIN LOOP
COMMON /ISCA/ TOPPLANE,M
COMMON /ISCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER TOPPLANE,M
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS
REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF
COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDMIFF
COMMON /RMAT/W( ,,25)
COMMON /SUBLMAT/MASKRB C , ), MASKMASK( ,
LOGICAL MASKRB, MASKMASK
REAL SAVEW( , ), Z ( , ), Zl(
REAL MAXSOFAR, ALPHA, BETA, WIDGRID2, WIDTHGRID
INTEGER NUMBTIMES, TOPPLANE
LOGICAL TEMPMASK( , ) , DONE, WSIGN( ,
EQUIVALENCE (WSIGN, Z)
ALPHA OMEGA * 1.0 / 6.0
BETA = 1.0 - OMEGA

C
C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0
C

NUMBITERS - 0
WIDTHGRID = 1.0
WIDGRID2 = WIDTHGRID * WIDTHGRID

C
C SAVE THE MASKRB FOR LATER RESTORATION
C

TEMPMASK = MASKRB
C
C MAXDIFF IS THE MAXIMUM DIFFERENCE BETWEEN SAVEW AND W( ,,K) AFTER W( ,,K)
C HAS ITS RED (OR BLACK) VALUES CHANGE (FOR ALL K)
C
I MAXDIFF = 0.0

NUMBITERS = NUMBITERS + 1
MASKRB = TEMPMASK
DO 30 NUMBTIMES = 1,2

C
C ITERATE FROM THE 2ND PLANE TO THE TOP PLANE
C

DO 20 K = 2, TOPPLANE
SAVEW = W( ,,K)

C
C REVERSE RED/BLACK FUR SUCCESSIVE PLANES
C

MRSKRB(MASKMASK) - .NOT. MASKRB
C
C SUM THE SIX NEIGHBORS

SAVEW(1, ) - SHN(SAVEW,2)

SAVEW(M, ) - SHS(SAVEW,2)
Z SAVEW(-,-)

ZI SAVEW
ZI(MASKRB) mW( ,,K + 1)
Z(MASKRB) " W( ,,K- 1)
Z -Z + Z1
zi - Z( ,+)
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Z1(.NOT.MASKRB) - -WIDGRID2
Z Z + Z1
Z - Z + Z(+,

C
C STORE THE AVERAGE OF THE SIX NEIGHBORS IN W ONLY IN THE RED (OR BLACK) CELLS
C

Z - ALPHA * Z + BETA * SAVEW
Z(WSIGN) - 0.0
W(MASKRB,K) = Z

C
C FIND THE MAXIMUM DIFFERENCE ON THIS PLANE
C

MAXSOFAR - MAX(ABS(SAVEW - Z),MASKRB)
IF (MAXSOFAR .GT. MAXDIFF) MAXDIFF - MAXSOFAR

20 CONTINUE
C
C REVERSE STATE OF ORIGINAL MASKRB FOR THE 2ND PASS THROUGH THE PLANES
C

MASKRB(MASKMASK) = .NOT. TEMPMASK

30 CONTINUE
DONE = (NUMBITERS.GT.DAMMAXITERS).OR. (MAXDIFFoLEoDAMEPSILON)
IF (.NOT. DONE) GOTO 10
MASKRB = TEMPMASK
RETURN
END

C
C

FIG. 4.2. First implementation of (4.11) and (4.12).
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- - j , . .. - • --- N- . -

THE MAIN LOOP - PROCESS ALL THE Z PLANES

SUBROUTINE MAIN LOOP
COMMON /ISCA/ TOPPLANEM
COMMON /ISCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT

INTEGER TOPPLANE, M
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIMES
REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF

COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, TIMES
COMMON /RMAT/W( ,25)
COMMON /SUBLMAT/MASKRB( , ), MASKMASK( ,
COMMON /WORK/ Z,WK
LOGICAL MASKRB, MASKMASK
REAL SAVEW( , ), Z( , ), Zi(, ), WKPI( , ),WK( , ),MAXD(
REAL MAXSOFAR, ALPHA, BETA, WIDGRID2, WIDTHGRID
INTEGER NUMBTIMES, TOPPLANE
LOGICAL TEMPMASK( , ), DONE, WSIGN( , ), TEST, NOTTEST

EQUIVALENCE (WSIGN,Z), (Z,ZI), (WK,WKP1)

ALPHA = OMEGA * 1.0 / 6.0

BETA = 1.0 - OMEGA

C

C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0

C
NUMBITERS = 0

WIDTHGRID = 1.0
WIDGRID2 = WIDTHGRID * WIDTHGRID

C
C
1 TEST = TIMES .EQ. 1

NOTTEST = .NOT. TEST

ITIMES TIMES
MAXD = 0.0

C
C

C ALTER ALL THE ODD NUMBERED PLANES:
2 K2 =1

DO 20 K = 2,TOPPLANE,2
SAVEW = W( ,,K + 1)

WK = W( ,,K)

WK(1, ) = SHN(WK,2)
WK(M, ) = SHS(WK,2)

Z = WK + WK(-,-)
Z = (Z(+, ) + Z( ,+) + WK + MERGE(W( ,,KM2),W( ,K + 2),MASKRB)

- WIDGRID2) * ALPHA + SAVEW * BETA

Z(WSIGN) = 0.0

W(MASKMASK,K + 1) = Z
IF (NOTTEST) GOTO 20
ZI - ABS(SAVEW - Z)

MAXD(Z1.GT.MAXD) = Zl

20 KM2 K
C
C
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C ALTER ALL THE EVE NUNDERI PLANES:
DO 21 K - 2,TOPPLANE,2
SAVW - V( ,X)
WKI - W( *,K + 1)
WKP1(1, ) - SHN(Vill,2)
M CK, ) - SHS(WXPI,2)
Z - Wi + WIl -,-)
Z - CZ(+, ) + Z( ,+) + WXI + NERGICIC ,,K + 3),W( 1,K 1),NABKRD)

- WIDGRID2) ALPHA + SAVEW B ETA
ZCWSIGN) - 000
W(NASKKASK,K) -. Z
IF (NOTTEST) GOTO 21
Zi - ABS(SAVEW-Z)
KAX(Z1.G;ToNAXD) - Zi

21 CONTINUE
c
C

ITIMES - ITI14ES - I

IF (ITINES.GT.1) GOTO 2
IF (ITIMES.EQ.0) GOTO 3
TEST - .TKUE.
NOTTEST - .FALSE.
GOTO 2

c
3 NUMBITERS - NUMBITERS + TIMES

MAXIF - MAX CMAXD,MASnKM)
IF CMAXIFF.LT.DAMPSIWON) GOTO 4

c
IF CHUMITERS *LT *DANMAXITERS) GOTO 1

4 RETUZN
END

FIG. 4.3. Second implementation of (4.11) and (4.12).
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S. Future possibilities

(a) For purposes of comparison we have used previously published problems but they

have dimensions which do not match the DAP array closely. In many practical

problems the resolution would be tailored to the DAP dimensions to achieve

higher performance.

(b The programs presented are readily extensible to larger problems on

correspondingly larger DAPs such as the production 64 x 641 it is only

necessary to change the boundaries. The time to process one plane would be

unchanged.

(c) Performance on small three-dimensional problems can be improved by mapping

several problem planes onto one DAP matrix.

(d) Problems with large "horizontal" dimensions can be mapped with each PE holding

a small neighborhood group of points. Performance improves because each PE

holds both black and red points (Hunt (1979]).

(e) Very large problems cannot be held entirely within DAP store. For example with

four times as many points in a horizontal plane as there are PEs the limit is

about 26 planes with 4K bits per PE or about 122 planes with 16K bits per PE.

With backing store the transfer rates with N active problem planes in the DAP

can be minimized by advancing each plane (N - 2)/2 iterations per backing

store fetch. Hence it should be possible to achieve a balance between input-

output and processing times (Reddaway (1976]).

(f) Problems of this type offer possibilities for using fixed point arithmetic

(with suitable scaling) and using low precision for computing the iterative

corrections. This is much faster than floating point work and performance

p improvements as large as a factor of 10 are predicted without loss of accuracy

in the final solution.
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6. conclusions

we have demonstrated that two- and three-dimensional linear complementarity

* problems can be solved on DAP with high performance and easy programing using a

version of projected SOR. There is scope f or even higher performance and for

tackling a wide range of problem sizes.
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APPENDIX A: The Pilot Host-DAP Interface.

In the Pilot DAP system the store of the DAP is not an integral part of the

host's store as with the production DAP's. It is therefore necessary to explicitly

move data between the host and DAP and this is achieved by using standard host

FORTRAN subroutines. The subroutine names begin with DAPTO or DAPFROM depending on

whether they move data into or out of the DAP. The remaining letters of the name

indicate the type (integer or real denoted by I or E) and rank (scalar, vector or

matrix denoted by S, V, or M) of the variable transferred. Parameters of DAPTO and

DAPFROM give the name of the host program variable and the location within the DAP

in terms of the name of the coamon area and the offset from the start of this area.

Initiation of DAP processing is also less direct on the Pilot system with DAP-

FORTRAN subroutines being called via the standard host FORTRAN subroutine DAPGO. A

statement of the form:

CALL DAPGO('DAPSUB' ,N)

will suspend execution of the host FORTRAN and transfer control to the DAP-FORTRAN

subroutine DAPSUB. Execution of the host FORTRAN is resumed after DAPSUB and any

further levels of DAP-FORTRAN subroutines have been executed. The parameter N

gives the maximum number of seconds allowed for DAP processing.
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APPENDIX B: The two-dimensional dam problem.

v.ASTEiR ECALpAL

c T41S DROUaRA'4 USES FINITE OIFFERLNCES TO SULVE NUMJ:ICALLY
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C LIECLUrED 014 A IUNIVAC 1110J AT THE UNIVERSIIY OF PiISCJNSLN
C 4I RC-i i!, 19d77; JUNE 1919)

C T-41S DRVA 4AS ARITTEN BY JOHN STANSBURY IN LJAP FORIMAN

C vi EiECUTED ON A4~ ICL 1900 (HOST) AND ON THiE LAP AT THE
C RSLARVCH 4 NL) ADV.ANCED DEVELOPMENT CtNTRE IN SleVE.NAG3E

C E.14GLA"JD IJuNE jits2Og 1979),

r. EXPLAINATION OF VARIABLEb

C H - TAF VALUIES AT THlE GRIDPOINTS
L Z-T-IF H4EWa VALUES AT T'4k GRIOPOINTSV

C magic - UbED Tj IMPLEMENr TH4E RED/BLACK SCHEME

C MiaS-. .1iS'K USEL) IN SETTING Up THE MASK# AND IN S0111CI4ING STArES
C ACC EqpS U IFFERENCES 8kTomEEN THE 0I6D ANU THE NEW~ VALUES
C
C bvAEGA - ejIE .JvERRELAXATILJN PARAM ETER
C EPSILON - THE DESIREL) ACCURACY
C UINE - 4 TE..1PORARY LOGICAL VARIABLE

~. j~.~I1cHKmTIZ1%JS r HE NUMj3R OF MTHATIUNS

C MAXE ITE,%TIONS T HE %IAXIMUM NUMbER OF IThRAIIUNS
C 40v ~w~b - THE NJMtdER OF ROWS IN THE GHIU
c !iA:4 COLb - T,4jE NUMBEQ OF COLUMNS IN THIE 'JRI
c- ^101if G~ilA" - 4I1)Tri UF UNIE UNIT IN THE G,41U
C HlEIGiHT 6KID " HLI~HT OF LINE UNIT IN THE (iHIL
C s4!1 ei,_VT? - SEL ExPLANATORY
C DAM r4EIbflT - SELF EXPLANATORY
C x GkIdjp.jI'iTS .THE NU01bEl4 OF GRIL.POINT IN THE IR'ECILJN
C Y (;1PQ1NTS -THE NUvid&R OF GRIOPOINT IN~ THE Y i)L4ECfIDIv
C '41TEI IT IS ASSUMEO THAT HiEIGHT (pRIU a MIUTH (LjHIU

C .)cC Al i'i;j JF VARIAbLES

CJ..IY). /, SCA/4AX U1FFp U'vikEGAv EPSILON. JAM 4JIUfi. DAM~ AELUMd
CjA40 '4 /ISCA/,#tAX ITEkAfIONS# NUMB ITERAFIUNS, NUN~d RUiNS# NU~1d CJLS

-4 %j'4UI NTS#Y 3RIUlPOINTS
PoEAL ,f O)%kGA, EPSILON. DAM 1.40TH, DAM HEI1rI~u MAX UIFF

.f.1A IfERArIJNS# NUMB ITERATIONS# NUvf0 kUNS, 14J~I COLSe
u ',I)P'jNTSv Y (RIDPU~iNTS

-Ir R .1 ViLI.-ir- STU-4s UF IHqE OiAM, AND THE MAAIMJwi NomdER JF I E'RA IIJ'S
I . ( 51 16e#E,4 U u 2a) D A A 1 T HD@NU DAM rEIf I o I, IA Ar4 A A&JN ti

1 10 F::k~ .ihTt -:roi #~* FIj SOH N'Y a @F13. 5)
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CREAD 11J IHE NUmwER OF A04S AND COLUMNS IN THE GRID, AND OPSIL0~4
5 PEA10#f120) NUMR COLS, NUMB HUS MPiLUN

4RITE(Ofi3o) OAA HEIGHT# DAM4 WIDTH, EPSILON. NUMB RfJASq

I NVM8 COLSo MAX ITERATIONS
13,) FOR4 AT117HIINFUT PARAmETERS,/14H DAm HEIGHT IS IuE131b,

I 13H D)AM AI'T'4 Is #E13,6@11H EP'SILON . Ej1Se/ I
2 1I NJsjR OF ROdS a #15o211 NLUMtIN UP CUIPLIMNS vL5

I .H4A-XI MUJ A IERAI ION$ 1,5)

c C1h4ERT AND TRAASFER DATA TO DAP

CALL DAPTO ES(EPSILON14HRSCA#2)
CAL6 DAPTJ ESIDAM WJluM4r1OHRSCA#3)I
CALL DAPTLo ESIDAMt mEIG~iT,'&HRSCAo4)

CALL L)APTO IS(MAX ITERATIONS#4HISCAO)
CALL DAPTO IS(NUMBI RUASjqHISCAf2)
CALL DAPTU IS(NUOia COLSO.4ZSCA,3)

C CALL Af4IN DAP FURTRAN SUbROUTINE
CALL LAPGUJ7HLAPLACE.1O)

C CV)N4ERT AND TRANSFER DAP DATA BACK TO 900
CALL DAPFRO',4 M(4,q44kAATo)
CALL. OAPFRUA tS(0MEGAs4iIRSCArlI
CALL OAPFROM hS(MAX DIFo4HRSILAv0 )
CALL JAPFR~q LS(NUM3 ITERATIONSt4HISCAl1)
CALL DAPFROM IS(Y GRIOPOINTS, 4HISCA, 5)
CALL DAPFRUM IS(X GRIDPOINTS, q4ISCA, 41

C
c WQlTE 00Ji TH'E sCALERS

wRTE(O',144) NUv1a ITERAIONS# OMEGA, MAR OIFF
140 FORAIAT~e 'u//I NU~ibER CJF ITERATIONS a vi15tv OmhGA loa ~ b

i I AAXJI11JM UIFFERENCE a ItEI3,b)
C
C ,IrE ~juiw

J a y 'R1LPONTS

1': F JRAA T I '9E13, 6)

IF .J GF-, t) Golo 10

.") 3,; A to I. GRIOPL'1NTS

I'. dj-IAr'' ,QF3

30 C) r 44

-37-



SOSROU INK LAPLACE

C SJSROUTINE TO CARRY OUT THE CALCULATIONS UN THE DAP
COMMON /RMAT/W(l)
COMMON /RSCA/MAX O1FF, OMEGA# EPSILON. UAM A'IIOrM, DAM HEIGH(
CJM40N /ISCA/mAE ITERATIONS# NUMB ITERAIIUNSo NLIMd ROOS# NLJ~i CJLS
COM40N IISCAIX GRIDPOINTSt Y ORIDPOINTS
REAL ofe MAX DIFF, OMEGA, EPSILON# DAMI WIDTH# LIA4 NE1(MT
I'JTEGEM MAX ITERArflNSt NUMB ITERATIONS# NU40 RUNS# NUMB COLS
14TEGEh X (RIOPOINTS# Y GRIOPUINTS

C
C SET UP DAP FUJQTRAN COMMON AREAS

COMMON /SUBRSCA/I4EIGHT GRID# WIDTH GRID
COM40N /SUdLMAT/MASK(I, NIASK MASXI,)
REAL HtIGHT GRID, WIDTH GRID
LOGICAL MASK, MASK MASK

Cw INITILIl' ALL VARIAdSLES

CALL INIT UTHkbRS
CALL INIT MASK
CALL 1141T i1d

C PERFORM IHE ACTUAL CALCULATIONS
CALL MAIN 60OP

C WE HAVE NOW EITHER ACHEIVED THE DESIRED ACCURACY (IIEss MAX ERR
C 4m EPSILUN) OR WE HAVE ITERATED MORE THAN MAX LTKRATIUNs TIMES,

RET jRN

SU11KOVtLNE INIT MASK

C SJ8ROLJTINE TO INITIALIZE T04E 4IASK
COMON /1SCA/M1AA ITERAIIJ)NSp NIUvld ITEWAILUNSPNUJ4d RUMboaJNI Co6
C3MAON /ISCA/I GRIL)POINTSo Y LiRIUPOINTS
CDMAION /SUaLMjAT/'4AS<(pi, MASK MASK~,)
I'4TEGEm MAX ITERAIIONSp NUMB ITERATIONS# NU~b ROUdSp NUMd caLs
INrEGEN X GRILJPcINTS# Y GRIOPUINTS
LOGICAL MASv, MASK MASK

C
C ',IASK MASK~ IS A LOGICAL mASK UEU IN 5ErrLNG UP ANIU 1- CHANGIlNG rlb
C STArE rjF THI IASbKo MASK PIASK(I,J) IS FALSt '41'Ibt I a 1 OR I
C NlOMi QQow4; ANID qHEkk J () 1oRVLR j ) NULWii (IJLS, i r is rLjjE
C ELSENI.ERt,

mAS< MASK a *NOT$ (ALTC(N'JMR ROJS3 ORg ALTRINUMB COLSI)
MASK MASK(1,) a ,FAL.SE,
MASK~ .tMSg(f) 2 FAhSE1

C '6AS'( IS M'JC4 T.Ah SAAE AS '7A'.; :.)SK, ExCEPI THI44 M4ERE MASK MASK
C 1 TRJEt ,ASiK ALrEki'rts tsEr-EE,, r~ AUL PALb Jr.1ENI.-oi
C ON4 THE FULLOMINQ;
C I F MA4K MA SK II, J) a TRUE A NU I + J I S t: VhN I "t MASKIJJ)

C * TRUlE. ELSE$ M'ASK(1eJ3 * FALSE,

MA< ALTC(1) *LEQ, ALTR(1)
mASK(,'40T.mAS' 'ASK) a FALSE,
TRACE 127 (A1FNGEII,),M4ASK MASK))
TRACE 127 l'AE'GE(1eIf.)MS))
RETURN
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SUJBROUIINK INIT OTHERS

SUZBROUTINE TO INITIALIZE THE OTHER VAR1A@LkS
COMM4ON~ /RSCA/MAX DIFFOMEGAEPSILON#DAM WIDTMII)AA HEIGHT
COM40N /ISCA/MAX ITERArIONSVNUMS ITER'ATIONSoNVM9 4045tNUMB CU65S
COMMAON /ISCA/X GRIDPOINTS. v (OR1DPOINTS
COM40ON /SUBRSCA/HEIGMT GRILJ, WIDTH GRIU
REAL M4AX 01FF, UMEGA, kPSILDN# DAM WIDTH# DAM NE115MT
REAL H4t1GHT GRID# WIUTH4 GRID
INTEGEP( X QIUPOINTSe Y GRIDPUINTS# MAX ITERATIONS# NUMB ITRAArioNs
14TEGEP( NUMB ROOiS# NJUMB COLS

F OR T4E IEST PUN#
C DA~4 HC!GHT a 2480
C DAM AIDT14 se lb,

X GRI~eOINTS 0 NJUMB COLS + 1
Y GRIDrOINlS 8 NUMB ROWS 0 1
HEIGHT.GRIVJ u PAM HIEIGHT / NUMB ROWS

* I WIDTH4 VRID 0 IJAM I DTH / NUMB COLS
OME~GA 0 1,8
NJM9 lIERATIONS a 0
p ET JR N

ShBROUIINE INIT W
COMI40N /RSCA/MAX OlFFvUMEGAEI"SILUNpDAM WIDrH#OAM HEKi(1T
REA-L MIAX DIFFOMEGArEPSILONvDAM WIQTHD*M HE14MT
COM40N /ISCA/mAX ITERAiIONSINUMg ITERATIUNSeNVlMg RDOAS#NUMp CUL.S
e3M O04 /ISCA/i GRIDPOIN'S, V GRIDPOINTS
COMM4ON /SUBRSCA/HEIGHT GRIUt WIDTH GRID
REAL HtIGHT GHIDt oIDTh GRID
!NJTEGEKM AX ITERATIONS# Numn iTERATIONStNUMd MONdS# NUMB IOLS
INTEG~.m X QRILIP0INTSo Y GRIDOINTS
COM~nN /RMAT/W'(r)
REAL 'Ae TEmPV(), TEMPS
REAL INDEX(,)

C INITIAL1'E THE W MATRIX, I.Eve SET THE CUNSTANT S~uNDARY VALIJIS
C A'4D T-4E $INITIAL NONedOUNUARY VALUES,
C
C SET UP A VECTlR CONTAINING TPIE 1NO)1CLS

DO 30~ 1 IS 1,3
INDEX(I a I w 1,0

30 CONTINVE
C
C SET ALL UF4aZR

W a*I
C
r. CALCULAlt TV4( TEMPONAA~Y C0%SIANIS

TEMPS 8 DAM HEIGHT * DAM HEIGHT *0,

TEMPv a tNI)EV N~Jmd 4hJWS
w(el) 0TE'PS *(1Igo I-mDEg .wJuTH GkRlu / OAM m1Dl'mJ
w(I,) -T~.mPS *(1,) TEmPJ) (* m (1,Q ~ v
TRACFE 127 4,J
TRACE 127 (TEmPSv OAM HlEIGHTv &IUIH 5N()WAJ
TRACS 127 tIAM A1lJT-h 1IEIGhT IjWIO)
TRACE 127 (TFMPV)
TRACE 127 (INUER)
RETUJRN



F 7cSJBQO'JINE MAIN LOOP
C SUBROUTINE TO CARRY OUT TH CALChUAThIN

COM40vJ /Rt4ATl/Vi()
COMMO~fN ,RSCA/MAX OIFFfOMEGAEPSILONrOAM WR0rNDAM HEIGiHT
COMMON /ISCA/MAX £TERAIIONS#NUMs ITERATIONSiNUMB MO4ISNUMf CO96S
COMMON /ISCA/X GRIDPOINTSr Y GRIDPOINTS
COMM.ON /SUdLMAT/MASK(,), MASK MASK(p)
COMM~ON /S.JdqSCA/HEIGHT GRID, WIDTH GRID
REAL W#MAX DIFFo0MfiGAuIPSILONOAM WI0T~vD$M IlIBNI
REAL i4tIGHT GRI1D# WIDTH GRIfl
LOGICAL MASWI MASK MASK
INTEGE" X GRIL)POINTSo Y GRIOPUINTS
14JTEGEM MAX ITERATIONS# NUMB ITERArIONS9 NIJMO ROPIS, NUMB COLS

C LOCAL VANIABLES
REAL Zio)o W1IU GRID 2# Z MIN W(ple SAVE fi#)
14TEGEN NUhig TIMES
L3GICA6 DUNE, W S165J(#i
EJUIVA6ENCE (04 SIGN# Wdi

C
C ENSURE rTlAT 4 1S AN ZERO EVERYWHERE

W(WSIGN) 0 m
C
C CALCULATt TH4E CONSTANTS INAT ARE NEEDED 4IATbR UN

ALPH4A OMEGA *@2
BETA *130 a OMEGA

w GRID 2 w A10TH 3ktl) * WIDTH GRID

C START MAIA LOOP
C SAVE THE O3LD VALUE OF W
40 SAVE 4 a Vi

NUM4 I&NATIUNS uNUMB ITERATIONS * 1
D3 45 N~UMB TIMES a1#2

C
C REVERSE bTATE OF %ASK

MASI(('4ASK MASK~) a *%JOTg MASK
C
C CALCULATL Z J*1 UNLY T4E RED (OR BLACK) PUINTS Ab UETEMMINEU BY
C T4E MASK

Z39~3q

7 2 (*#) + 7(#+) -WIUl GRIP 2
W(MASK) a ALPHA * Z + dETA *V

C
C SPEC14L PARTI ENSURE THAT W IS )'N 0

w(W sL"N ,A'ng MASK MASK) w 0,0
45 CINTINUE
C
C FIND M.AIAUM DIFFERENCE dETWEEN ULU AND Nbi ft

0M6AX UIPF = *AX(ABS(SAVh o4 0 W))
C .
C CH4ECK TU SEE IF DESIRE) ACCURACY IS ATTAINE), UN IF NUMOER OF

(~ITERATIO14S HIAS hXCEkUE) LIMIT
D2NEs(ftAk UIFF,LEvEPSILON),ORg(NUMB ITEMArIUNb,G0 ,MAA IrERAriuNdJ
IF ('NUT. 0)1NIL) GO TO 4(

c;

TRACE 125 ('

-40-



TRACE 425 IIAA DIFFj

RF(4U.40 IrIRArzuNS.ST.MAX ITEP4ATIONSINUMB ItIMAr5OP458MAX ITERATION
C ALL DONE AIN LUOP
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APPENDIX C: The three-dimensional dam problem -implementation 1.

MiASTER ECAA L:

COMMON /RMAT/W132#32)
COMMON /ISCih/ ZPLANES. EPOINTS. YPOINTS#e UPpOINTS# XSPOINTS
COMMON /ISCA/ YRPOINTS. YLPOINTSP DAMMEIGHTe' DAMFACEe DAMRSIDE
COMMON /I$CA/ DAMIBACK, OAt4RSACK# DAMLFSIDE# DAMLBSIOS
COMMON /!SCA/ DAMMAXITERSe ao*TOMMANXI~tRS# NUMBiTERS# ?4UMBOT
INTESElt MPANESt XPOINTSt YPOINTse _XFPOINTS# ISPOINYS
INTEGER YPPOINTS# YLPOINTS. DAMNEIGHTv DAMFACEo DAMRSIDE
INTEGER DAt4L&ACK. DAMRSACKe DALSI~ DALSID9
INTEGER DAMMAXITERS# BOTTOMP4AXITERS# NUMBITERS
P__ EAL DAMEPSILON# BOTY.OMEPSILON# OMEGA, MAXDIPP
COMMON /RSCA/ DAMEPSILON# BOTTOMEPSILON# OMEGA# MAXO1FF
INTEGER vI(32).

__ REAL vR(32)
EQUIVALENCE (V1(1),.ZPLANES),IVRfI),DNEmPSILI43

___PAUSE 99
:A -__REAO(2, 10) DAMNEIGWTo DAMLFSIDE, DAMLBSIDEs DAMLSACK# DAMOBACK

IF(DAMWEIGH1 *LE. 0) PAUSE DO
READ(2,110) MAKITERSt EPSILON
DAMEPSILON a EPSILON
BOTTOMEPSILON W EPSILON
OA .MMAXITERS a PAXITERS
BOTTOMAXIJYERS SmAxiTERS

__ NUMBITERS 8 1
___ MEGA n 1.8-

MPANES s DAMHIEGHT I
__ DAMFACE = DAMLBACK * DAMRRACK

DAMRSIOE 0 DAMLFSIDE + DAMLBSJDE
XPCINJTS w DAMRSIDE + I
XFPOINTS a DAMLFSIDE *I

x8EPOINTS a DAMLBSIDE
YRPOINTS a DAMRBACK *2

* YLPOINTS 8 DAMLBACI(.I
YPOINTS a YRPOINTS + YLPOINTS
WR!TE(6,120) DAMNEIGHT, DAMLFSIDE, MAMLBSIDE# DAMLBAC(, DAMR8AC(
CALL DAPTO IV(VI,4"4ISCAtO)

* CALL DAPTO ES(DAMEPSILON#4NRSCA8O)
CALL DAPTO ES(BOTTONIEPSILONl4HRSCA, I)
CALL DAPTO ES(OM4EGAF4NRSCA#2)-

C
e THE T IMF nliT PERID IS SET To Qoo SECONDS
C

CALL DAPBO(7WLAPLACEv 6OO)
CALL DAPFRO4 FV(VR,4HRISCA#C)

- CALL DApFROAl IV(VI,4wISCA.O)
WRITE(6,130) NLJMAITERSt NUMROTv %AXOIFF
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7 .- -. .

C RIE ti"-H MATRE. FO TOP TO BOTTOM PLANE_

00-40M 1N -a - -w.

WRITE (6.150) K
- CALL DAPPRON. EM(W,4I4R*ATrB2(*(KsLk
__-00 40 -1 m 1.NI

A. CONTINUE t 1&$ H__

DO 50 J a I-#NJ

DO 50 KK w 1,NK

CALL DAPPROMi EM(Wq4I4RMAT,32*(Ks1))

50CONTINUE
00 641 w ,NI-
WRITE (6.170) 1
00 60 KKSI#NK
KmNK.KK+ I

__ CALL DAPPROM.EM(Wo4HRMAT,32*j(K.1l
WI'E f6s146) (W(IJ)eJUIoNJ

-&*L- CONTINUE
GOTO 10

1~~.FORMAT(510)
110 "ORkMATII-Ov EQO)'
126 FORMIAT( g'41,EIGI4T *lSo

t22H DAM LEFT FRONT SIDE mol5p2OHDAM LEFT BACK SIDE 8#15#
-- 2t2H LEFT BACK noI5,12NR1@HT? BACK *.13.//)

C10 FORMAT(234 NUMBER OF ITERATIONS ailS,
19)4NUMBOT w*I5,pflHMAVIMUM DIFFERENCE GoEI39S)

140 _FORMATlII v9EI3.6')
190 FORMAT(///IIH FOR PLANE o13)
170 FORMAT(/I/II4 FOR SIDE 013)
160 FORP4ATI///I11N FOR FACE 813)

END
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C START Of flPwPFORTRAN SECTION_

-t -SUBRGUTINE.TO CALL -OTHER-SUSPOUPTINKS--.- -__

C SUBROUTINE LAPLACE - -__

-- COMMON /tSC4/ 1PLANISt XPOINTSI YPOJNTS X FP m4tzpil 1BPOJNTs
COMMON /!SCA/ YRPOINTS, YLPOINTS# DAMNEIGHTo DAMFACE. DAMUSIDE
COMMON ,eI$C&1/ DAMLO-ACKe DAMRBAVKp OAMLFSIDE10, DA11LBSIDE
COMMON /ISCA/ DAMMAXITERS1 BOTTOMMAXITERS# NUMBITERSo NUMBOT,
INTEGER ?PLANES; MIONTSe YPOINTS. VFPOtNTS, ISPOINTS
INTEGER YRPOINTS#_YLPOINTSI._DAMHEIGHT# DAMFACE, PAMRSIDE
INTEGER DAMLBACK#- DA-MRBACK, DAMIPSIDE, OAML&SIDE
INTEGER DAMMAXITERSo BOTTOMMAXITERSO NUMBITERS
REAL DA4EPSILO~s AlOTTOMEPSILO4I OME[GA. MAXDIFF
COMMON /RSCA/ DAMEPSILONo BOTTOt4EPSILONt OMEGA, MAKOIFF
COMMON /RMAT/W(#, 25)
COMMON /SUBLMAT/MASKRB(,)f MASKMASK(o)
LOGICAL MASKRB, MASKMASK
CALL INIT MASK
CALL INIT W
CALL INIT BOTTOM PLANE
CALL MAIN LOOP
RETURN
END

C
C INITIALIZE THE MASK$
C

SUBROUTINE IN~IT MASK
COMMON /ISCA/ ZPLANESP XPOINTS, YPOINTS# XFPOINTS# XRPOINTS
COMMON /ISCA/ YRPOINTS, YtPOINTS# DAMHEIGNY, OAMFACE, DAMRSIDE-
COMMON /ISCA/ DAMLBACK; DAMRBACKe DAMLFSIOE, DAmLSIOE
COMMON /ISCA/ DAMMAXITERSo BOTTOMMAKITERSo NUMBITERS, NUMeOT
INTEGER ZPLANES, XPOINTS. YPOINTSo XFPOINTSt XBPOINTS
INTEGER YRPOINTS# YLPOINTS@ DAMHEIGHT, DAMFACE, OAMRSIOE.
INTEGER DAMLAACKv DAMRBACKo DAMLFSIDEv DAMLBSIDE
INTEGER OAMMAXITERSo SOTTOMMAXITERS, NUMBITERS
REAL DAAAEPSILON# ROTTOMEPSILON, OM:3Av MAXOIFF
COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGAr MAXOIFF
COMMON /RMAT/W(v# 25)
COM4ON /SUBLMAT/MASKRB(#), 4ASKMASK(e)
LOGICAL MASKR8# MASKMASK
LOGICAL T(r)

C
C MASKMASK IS TRUE IN THE AREA OF flvoK) W4HERE COMPUTATION TAKES PLACE
C

'4ASKMASK a ROvdS(2oYPnINTSuI) *AND, COLS(2,XPOINTSvw1I)
C

T m .FALSE.
T a R0W'S(YRPnINTS# YPOINTS) SAND. COLS(XFPOINTS# XPDJ1NTS)
'4ASKmASx(T) a IFALSE.

C
C
C MAKP IS T4E REO/RLACV SCHEME
c

M4ASKRA4 w ALTC(1) .LEn), ALTR(l)
:AASvRB(.NOT. MASKMASK) a *FALSE.
TRACE 127 (4ERGE(1,O.TPAN(MASKMASK)))
TRACE 127 (%ERGE(1,ogTRAN(MASKR8)))
RETURN
END
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C I4ITIALIZI: THE' W MATRIX--
C

SUBROUTIN E INIT N
COMMON /ISCA/ ZPLANESe XPOINTSs YPOINTSf EPPOINTfS.0 ESPOINTS

COMM/ISCA,/ YR06 NTS,..YLPOINTSoDAMHEi-OWT 0DAUPA-Cfe DAMRSIOE
COMMON /ISCA/ DAMLBACKe OAMRBACK, DAMLFSIDEt DAMLSSIOE

-- C-MMON 1IICA/ 0AMMAkITEASq BO!TOMt4AXITE09u NUMITERSe IMO
INfTGR z0LANESl EPOINTSI' YPOiNfTS EPPOINTSj XBPOINTS

- INTEGER YRPOINTSI YLPOINTS, DAMNEIGWT, DAMFACgo QAMRSIDE-
INTEGER OAMLBACKl DAMRBACK# DAMLFSIOE, DAMLBSIDE-
INTEGER DAMMAWITERSe BOTTOMhtANITERSt NUMSITEFIS--
REAL DAIEPSILON# BOTTOMEPSILONe OMEGA# MAXDIF
C0M4ON-J RSCA/ DAMEPSILONe BOTTOMEPSILONOMf4AcLAX!DJPP
COMMON /RMAT/W( , 25 -

COMMON /SUBL4AT/MASKR9(#)s MASKMAS~4,)
LOGICAL MASKR8# MASKMASK
REAL TENIPSt TEMPS%
TEMPS a OAMi4EIGHT * DAMI4EIGHT *095 ---

00 10 K * to ZPLANES
W(111() a0,0
TEMPSI I ( K 11 / EFLOAT(DAMEIGHT) -

W(#1,K) a TEMPS *TEMPS1 TEMPSt
10 CONTINUE

RETURN
END

C
C- INITIALIZE THE BOTTOM Z PLANE (ImE. W(pt1))
C

SUBROUTINE INI? BOTTOM MATRIX
COMMON IISCAI ZPLANES# XPOINTS. YPQINTS# XFPOINt-Se XBPO'INVS
COMMON IISCAI YRPOINTS, YLPOINTSe DAMMEIGHT, DAMFACE# DAMRIIE
COMMON /ISCAI DAMLBACK, OAMRBACK, DAMLFSIDE* DAMLBSIOE
COMMON /ISCA/ DAMMAKiTERSt BoTTOMMAXITERS, NUMBITERSt NUMBO?
INTEGER ZPLANESP EPOINTS, YPOINTS, XFPOINTSv XSPOINTS
INTEGER YRPOINTS, YLPOINTSe DAMNEIGHTt DAMFACE# DAMRSIDE
INTEGER DAMLBACK, DAMRBACK# DAMLFSIDE. OAMLSSIDE
INTEGER DAM4AXITERSt BOTTOMMANITERS, NUMBIrERS
REAL DA'4EPSILON# BOTTOMEPSILONt OMEGA# MANOIFF
COMMON /RSCA/ DAMEPSILON# BOTTOMEPSILONt rMEGA, MAXOIFF
COMMON /RMAT/W( ,,25)
COMMON /SIJBLMAT/MASKR8( ale NASKMASKld,
LOGICAL MAS'(RB# MASKMASK
REAL Z(,)t SAVEWh),e ALPHA# BETA
LOGICAL DONE
INTEGER NUMBTIMES
NUMBOT m 0
ALPHA a OMEGA * 0.25
RETA a 1.0 - OMEGA

% 0 SAVEW U * rt
NUMROT a NU' B OT * 1
1)0 15 NJMBTIMES a t,2
MASP(RB(4ASe(MASK) a NOT. MASKRO

id(YPOINTS,1) * W(YPOINTS-2etII
Z a W(001) + J(-,.s,1)
I a Z(*.) + Z(t.*)
.4I(4ASWPRRI) a ALPHA * Z + BETA * v(sol)
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43 CONTINUE.
MAXOIFP p MAXIABIIIAVEN.W tl

-- ONExfMAXDI.FF;LE.SDOTTOMEPSILN)OR(NUMBOTGT.bUTTUIMAXITERS)
.IF (,.NOY._ DaNI)_ 6010 40
TRACE 127-(MAXDIFF, NUMSO-T)
RETURN--
END

C THE MAIN LOOP -PROCESS ALLTHt Z.PLANES

SUBROUTINE %IAIN LOOP -

COMMON /ISCA/ ZPLANESi KPOINTStYPOINTS# XFF.OI4TS1 9SPOINTS
COMMON /-!SCA/ YRPOINTSt YLPOINTSpDAMHEIGHT, DAMFACEe DAMRSIDE

- comNON /1ScA/LpAMtl5ACl(L DAMRIAC~s jMILPSIDEt 9 A-54-B04
COMMON /ISCA/ DAMMAXITERSCSOTTOMMAXITERSe NUMBITERSe NUMBOT
INTEGER ZPLANES# XPOINTS# YPTS~it YPOINTS, lpPOZNTS# X&POINTS
INTEGERYRPOINTS# YLPOINTS.D-AMHWEI6M1i, DAMFACEf PAM ,RSIDE
INTEGER DAMLBACKs DAMRSACK, DAULPSIDE, DAULBS1DS
INTEGER DAM,4AXITERS# BOTTOMMANITERSg NUMBITERS

__ REAL DAt4EPSILON# ROTTOMaEPSLON, OMEGA@ MANDWP -

-COMMON /RSCA/ DAMEPSI LONt SOTTOMEPSILON, OMEGA# MAXOIFF
- CQI4MON /RMAT1JW(,.2f)

COMMON /SUBLMAT/MASKRO( .1l MASkMASKt.) .... . . .

LOGICAL MASKR9, MASKMASK
REAL SAVEWb#)# Z(#)# Z1(s)

-~REAL MAXSOFARv ALPHA, $ETA# WIDGRI02o WZDTHSRIO
INTEGER NUMSTIMES, TOPPLANE
LPGICAL TEMPMASK(ele DONE# WSZIN( #I

-EQUIVALENCE (WSIGNoZ)
ALPHA *OMEGA * 1-0 / 60Q
9ETA 51.0 "OMEGA

c_ WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET To to*

NUMBITERS a 0
O'IITHGRJD 4 100
WIJDGAID2 a 4IDTHGRin * WIDTWORIO
YPTSM2 a YPOINTS so2
TOPPLANE a ZPLANES - I

C SAVE THE %iASKRB FOR LATER RESTORATION

TEMPMASK m IASKRB

C .MAXQI7-F IS THE MAX IMUM DIFFERENCE BETWEEN SAVEW AND W0#0K AFTER
C 'W(..K) NAS ITS RED IOR BLACK) VALUES CHANGE (FOR ALL K)

* C
I MAYDIFF a 0.0

NJMBITERS 8 NUMBITERS *i
MvASI(RO a TEMPMASK
00 30 NJMBTIMES 0 1.2

C
C ITERATE FROM THE 2ND PLANE TO THE TOP PLANJE

r)0 20 K a 2, TnPPLA'JE
rAVEW au~jw

I. c REVERSE RED/SLACX FOR SUCCESSIVE PLANES

MASKRB(4ASKAASK) a *NOT. %EASKR8
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C
c sum TWE SK iii teIsops

_sAVwamil) a SUN(SAVrWZ
qAVEW(YPMINT5o) a SHS(SAVEW,-2)
Z a AviWkit,,) I-_ - --

Z1 a SAVE4d
ZIe4ASKRB) aPhKj ~ --

Z(MASKRS) a W(*tgC5)-

7z 7

STIORE THE -AVERAGE OF- THE S I I NflGHO1NI R. WANLY IN THE
*C RED (OR BLACK) CELLS

I m AI,.PA * 2 * BETA *SAVEW

-W(MASKRB#K) a Z

C FIND THE 4AX1%IUM DIFFERENCE ON THIS PLANE

__MAXSOFAR a 4AXIASS(SAVEW' Z)oMASXRB)
__IF (MAXIOPAR GTW MAKOIFF) !4ANDIFF aMAX3OFAR

20 -CONTINUE

C REVEtRSE STATE OF ORIGINAL MASKRR FOR THE 2ND PASS THROUGH
C THE PLANES

MASKRS(hIASKMASK) 8 .NOT9 TEs4PMASK
30 CONTINUE

D0-ONE a (NUMaITERS.GT.DAM4MAXITERS).OR,(MAXDIFFLE.DAMEPSILON)
IF (.NOT. DONE) 6070 10
MASKRB TEIPMASK
RETURN
END
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APPENDIX D: The three-dimensional dam problem - implementation 2.

MASTER ECALPAL

COM14ON /Rt4AT/W452,32)
COMMON /ISCA/ ZPLANES, XPOINTSe YPOINTI, FPoINTS# xsPOINTS
COMMON /ISCAI YRPOINTSt YLPOINV OAM"MEISM?. OAUFAC9, W06104o
COMMON /ISCA/ DAMLBACKP DAMRACK. DAMLFSIDE, DAMLSSIDE
COMMON~ iISCA/ DAMMAXITERS, &OYTOwMAXITIRS# NLODITERS, 10UuO1T
INTEGER ?PLANES# WPOINtS, YPOINT~e xpPOITwtS ISPOINTS
INTEGER Y*POINTS@ YLPOINTS, DAMHCISUTe DAMPOCE, *AMRS191S
INTEGER DAML8ACKI DAMASACKo DAMLFSJOE# DAMLBSIDI
INTEGER OAMMANITERS, SOTTOMMAYITERS, NUMBITERSe TIMES
REAL DA4IEPSILQN, SOTTOMEPSILOJ, OMEGA# MAXIDIPP
COMMON /RSCA/ DAMIPSILON, SOTYOMEPSILON, OMEGA# MAXOIFF
INTEGER VI(32)
REAL VR(32)
EQUIVALENCE (VI(I)eZPLANES)e(VRIt)DAMEPSILONI
PAUSE 99

10 READ2,100) DAMIEIGt4To DAMLPSIDE, DAMLSSIOE. DAMLBACK, DAMOSACK
IF(DAMMEIGHT ALE. 0) PAUSE 00
READ(2.lt@) MAXIlERS. EPSILON# TIMES
OAMEPSILON a EPSILON
BOTTOMEPSILON a EPSILON
OAMMAKITERS a MAXITERS
ROTTOMMAXITERS a MANITERS
NU#4SITERI 6 1
04EGA a 1.8
MPANES a DAMWEIGHT I

DAMFACE a OAMLBACK *DAMABACK
DAMRSIDE 9 DA44LFSIDE + DAMLSSIDE
XPOINTS a DAMsRSIDE + I
XPPOINTS a DAMLFSIOE *I
XBPOINTS a DA'4LSSIOE
YRPOINTS a DAMRBACI( 2
YLPOINTS a DAMLBACK.1
YPOINTS a YRPOINTS + YLPOIN4TS,
WRITE(6,12@) OAMI4EIGb4V, OAMLPSIOE, DAMLBSIDE, DAMLbACKI DAMRBACK

CALL DAPTO IWIVIP4iIISCApo)
CALL DAPTO ES(OAMEPSILON*4NRSCAsO)
CALL DAPTO ES(8OTTO4EPSILON#4HRSCAt1)
CALL DAPTO ES(OMEGA,4HRSCAe2)
CALL OAPTO IS(TIMfSt4W4RSCAt4)

C
C THF TIME OUT PERIOD I% SET To e00 SECONDS
C

CALL DAPGn(7wLAPLACEe 6001
CAL.L DAPPRO4 EV(VRI4RSCAs@)
CALL DAPFROA IV(VI,4HlSCA@O)
WRITFI,t30) NU'wBITERSt NUMBOT* I4AXDJFF
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C WRI1TE OUT THE W M4ATRIX, FROM TOP To BOTTOM pCAhIE

NK 4 ZPLANES
NI a YPOINTS
NJ a NPOINTS
DO 40 K a 1,WK
WRITE (6,150) K
CALL OAPPROM EM(WA4RMAT,32*(X.1))
00 40 1 a I,NI
WRITE (6.140) (W(IJ)#JaiNJ)

4, CONTINUE
GOTO 10

n0 50 J u I,NJ
WRITE (6116u) j
00 50 K9 a 1,NK
K a mK.V.K*1
CALL DAPFROq EM(W*4,4IMATe32*(KwI))
WRITE (6#140) (W(1.J)ola1,Nl)

90 CONTINUE
00 60 1 a I.NI
pRITE (61170)1
DO 60 KKUINI(
KGNK-KKO I
CALL DAPFRO04 EM(W,414mMAT,32*lwul))

to CONTINUE
GOTO 10

loo F0R14A?(g1*)
Ito P004AT(l0, E0.0, 18)
120 FOQt4AT( 9N1,4EIGHT 6*,10

1224 DAM LEFT FRONT SIDE m@15,2O4M LEFT BACK SIDE n#15#
212W LEFT BACK s,15,1?NRIGWT BACK 0#15#//)

Ilto FOR'4Ay(234 eI0MSER OF ITERATIONS N#15#
ION4 NUtaSOT a. I5,20HUXAIMUM DIFFERENCE atE13,6)

ISO IF004AT(IN #9F13.6)
140* P3RMAT(///llw FOR PLANE .131
170 FORIAT(///11b4 Fop SIDE .13)
lA'G F0R4AT(///Ilw FOR FACE #13)

FNfl
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COMM~ON /iSCtAl ZPLANES, XPOINTS# YPOINTSo XFPOINTS# XIBPOINTS
COMM4ON /ISC~l-YRP0INTSf YLPOINTSg OAMHEIG4Ts OAAFACEt DAMRSIDE
CIMMON /ISCAI DAMLBACC, OAMRRACK, DAMLFSIDEv DANILOSIDE
COMMON /ISCA/ OAM14AXITERSt BOTTOMMAXITERSt NUM8ITERS# NUMBOT
IVTEGER ZPLANESv XPOINTS, YPOINTSs XFPOINrsv XSPOINTS
imTfotW-YRP~1NTSt YLPOINTSut OAMNEIGH?, DAMFACfff DAMRSIDE
14TEGER DAML&ACX, DA-MR&ACK, DAMLFSIDEr DAMLOSIDE
INTEGER DAMMAXITERSt BOTTOMMAXITEOSt NUM41TERSf TIMES
REAL OA'4EPSILONt BOTTOMEPSILON, OMEGA, MAIOIFF, Z(t)
commoN /RscAJ-DA4EPSILOIN. SOTVOMEPSILON, O)MEGA, MAXOIFFv TIMES
COM4ON /RMATIM( 1,25)
COM*ON /$SCBLIIAT/MASKOSili1L hASkt4ASK(,) - -

LOGICAL MASK-RB, MASKMASK

-- CALL INI-T -MASK -

CALL INIT It-
CALL INIT BOTIOM PLANE
CALL MAIN LOOP
DO 1001 Ka 2#ZPLANESw2#2
z Wft --- -

WIMASXRB#K)-- u Wh~(1
W(MASKI 19 t11a Z

100t CONTINUE
RETUN.
END

C iNJ!TIALiZE T~If MASKS
C

SUBROtiTINI INIT MASK
CIMMON /ISCA/ ZPLANESs EPOINTS1 YPOINTSs XFPOINTS, XOPOINTS
COM'40N /ISCA/ YRPOINTSo YLPOINTS, DAh04EIG'4To DAMFACE, DAMASIDE
COM40N /ISCA/ DAMLBACKo OAMABACK, DAMLFSIDE, DA&ILOSIOE
COMAON /ISCA/ DAMMAXITERS# BOTTOMMAXITERS, NUMBITERSt NUMBOT
IN~TEGER ZPLANES# WPOINTS, YPOINTS# ERPOINTSr NSPOINTS
INTEGER YRPOlNTSs YLPOINTSt DAMNEIGHT, DAMFACE, OAMRSIDE
INTE5ER DAMLRACKv DAMOBACKi DAMLFSIDE, OAMLt3SIDE
INTEGER OAMMAXITERSt BOTTOMMAXITERS, NUMBITERS, TIMES
REAL DANIEPSILON, BOTTOMEPSILONt OMEGA, MAXOIFF
CIMION /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA# MAXDIFF, TIMES
COMqflN /RMAT/W(##25)
COM40N /SUBLMAT/MASIR(RRI)o mASKMASK( ,J
LOGICAL MASKRO, MASXMASK
LOGICAL T(t)

C
C 4ASKt4ASK IS TRUE IN Tt4E AREA OF WUtK) WHkNE COMPUTATION TAKES PLACE
C

MAS<qASK a ROWS(2,YPOINTSoII @AND. COLS(2oXPflINTS-1)
C

T u Ro4S(YRPOINTS# YPOINTS) SAND. COLS(XFPO1NTSe XPOINTS)
MASI04ASK(T) m IFALSE,

C
C
C MSKRI IS TH4E OEfl/RLAC' SCI4FMF
C

'AAS(RR a ALTC41) *LEf). ALTRII)
TF (.NOT.SW~ITCw(2)) M.ASPO.NOT.MASKQS
TRACE 127 (MFRGE(1,ZTRAN(MASkMASVflj
TRACE 127 (%ERGE(1,',TRAN(MASKRA)))
RET'jR N
END
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I T A~;L IZE -TH'E- W MA. dI X

C~34ON LICIP.ANES# XPOINTS YPOINTS, XFPOINTSp XOPOINTS
COMMOw / ISCA/ YRPOINTS, YLPOINTS# OAM4HEIGHTe DAMFACE, DAMRSIOE
COMMION /ISCAj DAMLBAC(, DAMRBACK# OA4LFSIDE, DAMLSSIDE
r0M40N /ISCA/ OAP4MAKIYERSe BOTTOMMAXITERS, NLDMAITERSe NIJMBOT

EGER ZPLANES# XPOINTS# YPOINTS, XPINTS#, ESPOINTS--
IN EGER YRPOINTS, YLPOINTS# OAhti4IBt DAMFACEs DAMRS1DE-.-

arc! AMLSACK, DAMRBACK# OAMLFSIOE, OAMLBSIOE
Z!~4EGER DAMMAXITERSs BOTTOMMAXITERS, NUMBITERS# TIMES
REAL OAMEPSRLONt BOTTOMEPSILON# OMEGA# MAXDIFF, Zhj)
COM014M/RI4,A4EPSILONt ROTT09EPSII.ON# QREGA# NIAXOIFF, TIMES
COMMON /RMA-T/W(PP9.2)
COMMON /StJBLMAT/MASKRR( ,) * MASK14ASK 4,)
LOGICAL MASKRB, MASKMASK
REMl TEMPS* T!NIPS1

TEMPS m -DAMNEIS-T. DAMHEIGm? 0,9
DO 10K 1,I ZPLANES

-M ~W.K) U-0,0
TEMPSI I - (K U / EFLOAT(DAMHEIGHT,

N 4u1,K) *TEMPS *TEMPS1 *TEMPSI
10 CONTINUE

00 1001 Kv 2,ZPLANESw2#2
7 a w(,,K)

--- -W(MASKRBK.1 * Z
1001 CONTINUE

-- w(,,zPLANESbl) mWfs#ZPLANES)

END

C INITIALIZ E THE BOTTOM Z PLANE (I.Em W(j,))

-$UITNE INIT BOTTOM MATRIX'
e0M4ON /ISCA/ -- PLANES, WPOINTS. YPOINTS# XFPOINTS, XOPOINTS
COM4ON /ISCA/ YRPOINTS# YLPOINTSv DAMHEZGHT, DAIFACEo DAMRSIDE
eOM4ON IISCAi DAMLBACW# DAMRACK, DAMLFSIOEt OAMLSSIOE
COM40N /ISCA/ DAMMAXITERS. BOTTOMMAXITERSt NUMBITERS, NUMBOT

W4ESER ZPLANES# XPOINTSg YPOINTS# XFPOINTSt X&POINTS
INTEGER YRPOINTSP YLPOINTSe DAMHEIGHTv DAmFACE# DAMWSIOE
14TESER DANILBACKt DAmQ8ACK, OAMLFSIDfv DAMLHSIDE
TNTEGER OAbMMAXITFRS# BOTTOMmAXITERSt NUMBITERS, TIMES
REAL DAMEPSILON, SOTTOMEPSILON, OMEGA# MAIOIFF
COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON. OMEGA, MANDIFFe TIMIES
COMMON /RMAT/Wfo# 23)
COMMION /SURLMAT/MASi'RR(,)v MASKMASK(,)
LOGICAL MASXRO, MASKMASK
DEAL 7(,)t SAVEMUe), ALPHA# BETA
LOGICAL DONE
14TEGER NUMRTIMES

Num~nT *0
ALPHA *OMEGA * fl.25



RETA 1.0O OMEGA
40 SAVEW Wfr*

NUMBOT uNUMB OT * I
DO 4.5 NUMBTIMES * 1.2

WIYPOINTS.is) p W(YPOINTS*2,,1)
z n Mifd) + flw,~ll)
z " 7(*#) * Z(14)
W(M4ASKRB.AND.MASI(MASK#1) *ALPHA *Z *BETA * I'll1)
MAS(RB 0 ,NOT* MAS9(RB-

45 CONTINUE

MAXDIFF a MAXIASSSAVEW wel)
DONEUI MAXDIFF ,LE. BOTTOMEPS ILON ) ,OR . NUMBOT. GE. OTTOMMAX ITEMS )

TRACE I27ImAXDIPFF NUMBOT)
RETURN
END

C _S at- PAE
C THE MAIN LOOP - PROCES ALL H PA
C

susRoUTINE AIAIN LOOP -

COM40N /ISCA/ ZPLANESt XPOINT-S, YPOINTS# XFPDINTS. XiSPOINTS
COMAION /ISCA/ YRPOINTS, YLPOINTS, DAMI4EIGHTt DAMiFACE, DAMRSIDE
COMMON IISCAI DAML$ACX# OAMPBACK# DAmLFSIO6, DAmLBSI()E
COMMON /ISCA/ DAMMAXITEOSt BOTTONIMAEiTERSf NUMBITERS. NUMBOT
INTEGER ZPLANES, XPOINTS# YPTSM2# YPONTSr XFPOINTSp ISPOINTS
INTEGER YRPOINTS, YLPOINTSo DAMHEIG4Tr DAMFACEP DAIRSIDE
INTEGER OAML RAC~e DAMR-OAC(, DAMLFSZf DAMLOSIDE
INTEGER DAMIAXITERS, ROTTOMMAXITERS, NUMAtTERS, _TIM~ES
REAL DAMEPSILONt BOTTOMEPSILON, OMEGA# MANDIFF
COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAYOIFF, TIMES
COM4ON /RMATWI,,25)
COMAON /SURLMAT/MASKR(Ri,)o MASKNiASK(t)
COMMON /wOAk/ Z.40
LOGICAL MASKR8, 4SMASK
REAL SAVEWt). ZI.)o ZlI,), WPIl)# WI,)p MAXDI#)
REAL 4AXSOFARs ALPHA# BETA# WIOGRID2o WIDTH.GRI0
INTEGER NUMBTIMES, TOPPLANE
LOGICAL TEMPMASKI,)v OONE. WSIGNI,)s TEST# NOTTEST
ElUIVALENCE (WSIGNZ), 17.11)t IWXWKPI)

ALPHA *OMEGA o 1,0 / 6.0
RETA 1.0 - OMEGA

C
C WJIDTH OF GRID (I.E. ONJE UNIT SnUARE) IS SET TO) 1,0
C

NJMATTEPS a 0
wIOTHGCRID a 1.0
WIDGR'ID2 a WiTOTHGRItD * WIDTwGRJD
TOPPLiANE a ZPLANES -i



C

1 TEST *TIMES *EQ. I
NOTTEST * NOT, TEST
IT4ES *TIMES

MAXO a 0.0

C ALTER ALL THE f000 NUBEREO PLANES$
2 K42 a

00 20 K a 2*TOPPLANE#2
SAVEW * (#KI
WX a Wilex)
WIC(lpJ a SI4N(WK#2)
WK(YPOINTSe) a SbS(4Ko2)
7 a WK + Wx(.eq)
7 a (7(*)47(,*)*WK(MERGE(W(,eKM2IeuI(,.K*2),MASKR).WIUGRI02)OAkLPN
Z(WSIGN) a 0,0
WIMASXt4ASX@VIe) 8 Z
IF (NOTTEST) GOTO 20
71 w ASS(SAVEWwZ)
MAXD(ZI.GT.MAX0) a zi

20 veA2 mK
C
C
C ALTER ALL THE EVEN NUMBERED PLANEI

00 21 K a 2,TOPPLANE#2
SAVEW 4 W(,,K)
WKPI a WI#PK*I)
WKPI(15 ) a SMN(WKPio2l
WKPI(YPOINJTS#) a SHS(WKPI.2)
7 8 WKPI + WKPI(Te")
7 a (Z(*,).7(,#*.MKP1.MERGE(WiueK*3),W(aKu1),MASKRaI-wI0GR[02)*AL
Z(WSIGN) a 0.0
W(MASK?4ASX#X) w Z
IF (NOTTEST) GOTO 21
71 a ABS(SAVE'IZ)
MAXD(71.GT.NtAXD) * ZI

21 CONTINUE
C

tTIIES a tTIMES~t

IF (ITIMwES.GTol) GOTO 2
IF (ITIMES.E0O) GOTO 3
TEST a STRUE.
NOTTEST a OFALSE,
GOTF) 2

3 NUH41ITERS u NUMBITERS * TIMFS
MAVDIFF a 4AT('4AXODw1ASICMASKl
IF (MAEDIFF.LT.DAmEPSILON) GOTO 4

IF (NlJMRITEQS.LT.r)AMAXITERS) GOTO 1
4 RETJ)RN
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